Regularizing Properties of a Truncated Newton-cg Algorithm for Nonlinear Inverse Problems

نویسنده

  • MARTIN HANKE
چکیده

This paper develops truncated Newton methods as an appropriate tool for nonlinear inverse problems which are ill-posed in the sense of Hadamard. In each Newton step an approximate solution for the linearized problem is computed with the conjugate gradient method as an inner iteration. The conjugate gradient iteration is terminated when the residual has been reduced to a prescribed percentage. Under certain assumptions on the nonlinear operator it is shown that the algorithm converges and is stable if the discrepancy principle is used to terminate the outer iteration. These assumptions are fulllled, e.g., for the inverse problem of identifying the diiusion coeecient in a parabolic diierential equation from distributed data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of advanced large-scale minimization algorithms for the solution of inverse ill-posed problems

We compare the performance of several robust large-scale minimization algorithms for the unconstrained minimization of an ill-posed inverse problem. The parabolized Navier-Stokes equations model was used for adjoint parameter estimation. The methods compared consist of two versions of the nonlinear conjugate gradient method (CG), Quasi-Newton (BFGS), the limited memory Quasi-Newton (L-BFGS) [15...

متن کامل

Comparison of advanced large-scale minimization algorithms for the solution of inverse ill-posed problems

We compare the performance of several robust large-scale minimization algorithms for the unconstrained minimization of an ill-posed inverse problem. The parabolized Navier–Stokes equation model was used for adjoint parameter estimation. The methods compared consist of three versions of nonlinear conjugate-gradient (CG) method, quasiNewton Broyden–Fletcher–Goldfarb–Shanno (BFGS), the limited-mem...

متن کامل

A Statistical Method for Regularizing Nonlinear Inverse Problems

Inverse problems are typically ill-posed or ill-conditioned and require regularization. Tikhonov regularization is a popular approach and it requires an additional parameter called the regularization parameter that has to be estimated. The χ method introduced by Mead in [8] uses the χ distribution of the Tikhonov functional for linear inverse problems to estimate the regularization parameter. H...

متن کامل

Newton-type regularization methods for nonlinear inverse problems

Inverse problems arise whenever one searches for unknown causes based on observation of their effects. Such problems are usually ill-posed in the sense that their solutions do not depend continuously on the data. In practical applications, one never has the exact data; instead only noisy data are available due to errors in the measurements. Thus, the development of stable methods for solving in...

متن کامل

Modify the linear search formula in the BFGS method to achieve global convergence.

<span style="color: #333333; font-family: Calibri, sans-serif; font-size: 13.3333px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-dec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997